Discrimination of near-native protein structures from misfolded models by empirical free energy functions.

نویسندگان

  • D W Gatchell
  • S Dennis
  • S Vajda
چکیده

Free energy potentials, combining molecular mechanics with empirical solvation and entropic terms, are used to discriminate native and near-native protein conformations from slightly misfolded decoys. Since the functional forms of these potentials vary within the field, it is of interest to determine the contributions of individual free energy terms and their combinations to the discriminative power of the potential. This is achieved in terms of quantitative measures of discrimination that include the correlation coefficient between RMSD and free energy, and a new measure labeled the minimum discriminatory slope (MDS). In terms of these criteria, the internal energy is shown to be a good discriminator on its own, which implies that even well-constructed decoys are substantially more strained than the native protein structure. The discrimination improves if, in addition to the internal energy, the free energy expression includes the electrostatic energy, calculated by assuming non-ionized side chains, and an empirical solvation term, with the classical atomic solvation parameter model providing slightly better discrimination than a structure-based atomic contact potential. Finally, the inclusion of a term representing the side chain entropy change, and calculated by an established empirical scale, is so inaccurate that it makes the discrimination worse. It is shown that both the correlation coefficient and the MDS value (or its dimensionless form) are needed for an objective assessment of a potential, and that together they provide much more information on the origins of discrimination than simple inspection of the RMSD-free energy plots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of the native from misfolded protein models with an energy function including implicit solvation.

An essential requirement for theoretical protein structure prediction is an energy function that can discriminate the native from non-native protein conformations. To date most of the energy functions used for this purpose have been extracted from a statistical analysis of the protein structure database, without explicit reference to the physical interactions responsible for protein stability. ...

متن کامل

Geometric packing potential function for model selection in protein structure and protein-protein binding predictions

Protein structure prediction and protein-protein docking are two fundamental problems in molecular biology. Solving these two problems require an effective potential function to select the correct models from an ensemble of alternative conformations. Such potentials should be able to accurately assess the relative changes in protein stability upon folding and upon complexation. Because residues...

متن کامل

Identifying native-like protein structures using physics-based potentials

As the field of structural genomics matures, new methods will be required that can accurately and rapidly distinguish reliable structure predictions from those that are more dubious. We present a method based on the CHARMM gas phase implicit hydrogen force field in conjunction with a generalized Born implicit solvation term that allows one to make such discrimination. We begin by analyzing pair...

متن کامل

An improved protein decoy set for testing energy functions for protein structure prediction.

We have improved the original Rosetta centroid/backbone decoy set by increasing the number of proteins and frequency of near native models and by building on sidechains and minimizing clashes. The new set consists of 1,400 model structures for 78 different and diverse protein targets and provides a challenging set for the testing and evaluation of scoring functions. We evaluated the extent to w...

متن کامل

ClusPro: an automated docking and discrimination method for the prediction of protein complexes

MOTIVATION Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. RESULTS We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2000